Analysis and simulation of nutrient retention and management for a lowland river-lake system
نویسنده
چکیده
In the context of the European Water Framework Directive, we studied the possible impact of reduced emissions on phosphorus and nitrogen concentrations in a lowland river-lake system (Havel River, Germany). As a prerequisite, we quantified the retention of nutrients in the river from mass balances and deduced its seasonal variation. We detected that about 30% of the total nitrogen input is retained within the surveyed river section. In contrast, phosphorus release from sediments was shown to cause a considerable increase in present P concentrations. Average net phosphorus release rates of about 20 mg P m−2 d−1 in late summer were estimated for the Havel Lakes. Based on the observed patterns of N retention and P release we parametrized a newly developed water quality simulation program (TRAM), which allows alternative model approaches of different complexity to be implemented and tested. To account for the future trend of internal P loading, the phosphorus excess in lake sediments was estimated from core samples and included in the model as a state variable. For analyzing scenarios of reduced nutrient emissisions, the water quality simulation program was linked to mesoscale hydrological catchment models for the first time. From scenario simulations we conclude that internal P loading is likely to counteract efforts of emission control for decades. Even by significant reductions in external P loads, a persistent phosphorus limitation of primary production can hardly be established in the analyzed time frame of 13 years. Though in the short run a continued reduction in nitrogen loads appears to be the more promising approach of eutrophication management, we recommend enhanced efforts to diminish both N and P emissions. Correspondence to: D. Kneis ([email protected])
منابع مشابه
An eutrophication model for a lowland river-lake system
Natural and man induced nutrient loads affect the functioning of freshwater ecosystems and restrict various water uses. In particular, internal pollution by nutrient remobilisation from sediment plays an important role in shallow water bodies. A sustainable management of such freshwater ecosystems can be achieved by using simulation models. To forecast the eutrophication process of a shallow ri...
متن کاملAnalysis of nutrient retention and management for a lowland river
Model-based analysis of nutrient retention and management for a lowland river D. Kneis, R. Knoesche, and A. Bronstert Institute of Geoecology, Potsdam University, Germany Institute of Biology and Biochemistry, Potsdam University, Germany Received: 19 September 2005 – Accepted: 10 October 2005 – Published: 30 November 2005 Correspondence to: D. Kneis ([email protected]) © 2005 Author(s). Thi...
متن کاملRiver Flow Simulation Using SWAT Physically Based Model in Barandouzchay of Urmia Lake River Basin
Nowadays, there are too many models in the world for simulation of hydrological processes, such as the SWAT physically based model. The SWAT model is a continuous and physically based hydrologic model that is the smallest unit in this model is Hydrologic Response Unit, and all hydrological processes are simulated in each of these units. This model can simulate runoff, sedimentation, erosion and...
متن کاملRelationship between nutrients and phytoplankton biomass based on chlorophyll prediction model in Zribar Lake of Kurdestan, a case study
Zaribar Lake is a little shallow lake in Kurdistan province of Iran and it is faced to eutrophication.The study of phytoplankton biomass-nutrient relations is important in eutrophication management and there are many empirical models to predict phytoplankton biomass (chlorophyll a) based on nutrient (nitrogen and phosphorous) amounts in the lake. Evaluation of these empirical models and compar...
متن کاملFormation of a deep pit lake: case study of Aguas Claras, Brazil
The paper presents the case study of the current formation of a Brazilian pit lake from an iron ore mining activity. The water used for the filling of the lake comes from rain, ground water and the complementary pumpage from a close river. At its final stage, which will be reached around year 2018, Lake Aguas Claras will have a surface area of 0.67 km2 and the depth of 234 m, which will make it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006